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ABSTRACT

We show existence and regularity of solutions in RN to nonlinear elliptic equations of
the form −div A(x, Du) + g(x, u) = f , when f is just a locally integrable function, under
appropriate growth conditions on A and g but not on f . Roughly speaking, in the model
case −∆p(u) + |u|s−1u = f , with p > 2 − (1/N), existence of a nonnegative solution in
RN is guaranteed for every nonnegative f ∈ L1

loc(R
N ) if and only if s > p− 1.

AMS Classification: 35J60, 35J70.
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Introduction

Consider the nonlinear elliptic equation

(E1) −div (|Du|p−2Du) + |u|s−1u = f ,

posed in RN , N ≥ 1. We prove in this paper that, under the assumptions

(1) p > 2− 1
N

= p0 and s > p− 1 ,

for every f ∈ L1
loc(R

N ) there exists a function u ∈ W 1,1
loc (RN ) such that |u|s ∈ L1

loc(R
N ),

|Du|p−1 ∈ L1
loc(R

N ) and (E1) holds in the sense of distributions. The important point is
that a global weak solution exists with no extra assumption on the locally integrable data
f (we will use the word global to stress the fact that the solution is defined in the whole
space, RN ). Moreover, f ≥ 0 implies that u ≥ 0, inequalities between integrable functions
being understood almost everywhere.

Actually, our methods apply to more general equations of the form

(E2) −div A(x,Du) + g(x, u) = f ,

where A is a nonlinear elliptic operator with power growth in |Du| of order p−1 and quite
general dependence on x, and g(x, u) is of the same sign as u and grows in u like |u|s. A
precise statement of the assumptions on A and g is given in Section 1.

As a precedent to this work, Brezis [Br] proved not only existence but also uniqueness
of such a solution for equation (E1) when p = 2. The uniqueness of solutions for this and
related elliptic equations involving the p-Laplacian operator ∆p(u) = div (|Du|p−2Du) is
still an open problem (there are some recent results obtained by Bénilan [Be]). It is to be
noticed that in the general context of equation (E2) the results are new even in the case
p = 2, i.e. when we consider a linear elliptic operator with discontinuous coefficients.

As for the restrictions on the exponents, the condition p > p0 is natural in the theory
of the p-Laplacian operator in the L1-framework, as was explained in [BG]. But it is not
essential and, as a matter of fact, we obtain results even for p ≤ p0. The essential restriction
is thus s > p− 1. Indeed, we also prove that for s ≤ p− 1 and radially symmetric f ≥ 0,
a restriction on the growth of f as |x| → ∞ is necessary in order for (E1) to admit a
nonnegative radially symmetric solution. A similar growth condition was investigated by
Gallouët and Morel [GM] in the case p = 2. Observe that this condition makes the result
essential nonlinear: the case p = 2, s = 1 is excluded.

In order to state in detail our results we introduce for 1 < p ≤ N and s > 0 the numbers

(2) q0 =
(p− 1)N
N − 1
3



and its Sobolev conjugate

(3) r0 =

{
(p−1)N

N−p if p < N

+∞ if p = N .

Clearly, q0 > p− 1 and q0 > 1 precisely if p > p0. Also, q0 = p for p = N , otherwise q0 < p
and q0 < N . We prove the following results

Theorem 1. Let f ∈ L1
loc(R

N ), let p and s satisfy the conditions (1) and assume besides
that p ≤ N . Then there exists at least a global solution u of equation (E2) which belongs
to W 1,q

loc (RN ) for every q ∈ [1, q0). Consequently, u ∈ Lr
loc(R

N ) for every r ∈ [1, r0).
Furthermore, if f is nonegative, so is u.

The first ingredient of our proof consists in obtaining certain a priori local bounds: in
the case of equation (E1) we estimate the L1-norm of |u|s and some suitable Lr-norm of
|Du| in a ball BR = BR(0), R > 0, in terms only of R, p, s, N and the L1-norm of f in B2R;
no other information about the solution or the data is needed. When dealing with equation
(E2) the bounds depend also on the local norms of functions appearing in the structure
assumptions. The extra difficulty we face at this stage with respect to the method of [Br]
consists in obtaining explicit gradient estimates, which are not necessary in the linear case
p = 2.

The proof of Theorem 1 contains another delicate step in passing to the limit in the
sequence of approximate problems; it consists in showing that the gradients Dun of the
approximate solutions converge almost everywhere.

It is worth remarking that the spaces we obtain are optimal if we do not take into
account the special structure of the term g(x, u): they correspond to the best regularity
of solutions of ∆p(u) ∈ L1

loc. In particular, the exponents can be easily obtained from
Sobolev-type embedding formulas, which our result justifies.

When p > N the investigation is simpler since we can show that u is in fact locally
bounded. We then have

Theorem 2. Let f ∈ L1
loc(R

N ) and let s > p− 1 and p > N . Then there exists at least a
global solution u ∈ L∞loc(R

N ) of equation (E2) which belongs to W 1,p
loc (RN ). Furthermore,

if f is nonnegative, so is u.

Observe that |Du| ∈ Lp
loc is the regularity one expects from variational methods, which

cannot in principle be applied when the second member f is merely integrable.

Our methods work even in cases where 1 < p ≤ p0. Let us introduce for p > 1 and
s > 0 the number

(4) q1 =
ps

s + 1

which is larger than 1 when s(p− 1) > 1 and is always less than p. Then we have
4



Theorem 3. Let 1 < p ≤ p0 and s(p − 1) > 1. Then for every f ∈ L1
loc(R

N ) there
exists at least a global solution u of equation (E2) which belongs to W 1,q

loc (RN ) for every
q ∈ [1, q1). Furthermore, if f is nonnegative, then so is u.

Remark that for p < 2 we have 1/(p − 1) > p − 1, hence s(p − 1) > 1 implies q1 < s.
On the other hand, notice that if we want to define (in a weak sense) ∆p(u) for a function
u ∈ W 1,q

loc (RN ), with q < q1, we need q1 > p − 1. This happens precisely for s > p − 1,
which is satisfied in Theorem 3.

Another interesting theme of our investigation is the phenomenon that we will call
improved regularity . It can be explained as follows: according to its definition, a solution
u satisfies |u| ∈ Ls

loc(R
N ); this fact can be exploited to obtain a better information for

|Du|, using a sort of nonlinear interpolation. Of course, this will have a sense when p < N
and s > r0, otherwise the information u ∈ Ls

loc is irrelevant in view of the above results.
We then have

Theorem 4. Let f ∈ L1
loc(R

N ) and assume that p0 < p < N and s > r0. Then the
solution constructed in Theorem 1 satisfies |Du| ∈ Lq

loc(R
N ) for every q ∈ [1, q1).

We remark that s > r0 is equivalent to q1 > q0, hence the regularity improvement.
Moreover, we have q1 → p as s → ∞. No extra assumptions are made on f . It is also
interesting to notice that for s > r0 the Sobolev exponent associated to q1,

(5) q∗1 = q1N/(N − q1) ,

is smaller than s, i.e. the improved regularity obtained for |Du| is compatible with the
Sobolev embedding and the fact that the best information we have on u is u ∈ Ls

loc.

Summing up, we obtain the following (p-s)-diagram

Fig. 1. Diagram
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The basic a priori estimate is obtained in Section 2 and the results proved in Sections
3 and 4, while Section 5 contains the construction of the counterexample to existence if
s < p− 1.

Let us recall here a different but related result: an a priori estimate in L∞loc(R
N ) for

local solutions of (E1) holds for every s > p − 1 if we assume regularity on f , namely
f ∈ L∞loc(R

N ), as a consequence of the results of [V]. In that paper the condition s > p− 1
is shown to be necessary and sufficient for such an estimate to hold.

A final Section 6 is devoted to exploit our regularity improvement technique to equation
(E2) posed in a bounded domain Ω ⊂ RN with f ∈ L1(Ω) and homogeneous Dirichlet con-
ditions. Existence and regularity for this problem has been studied in [BG]. The improved
exponents correspond to those of the unbounded case. Roughly speaking, our basic lemma
says in the case of equation (E1) that, with the definitions of p0, q1 and r0 given above,
the fact that a function u ∈ W 1,1

loc (RN ) satisfies

∆p(u) ∈ L1(Ω) and |u|s ∈ L1(Ω)
implies that

u ∈ W 1,r
0 (Ω) for all 1 < r < q1 if p0 < p < N and s > r0.

To end this introduction let us remark that similar techniques can be applied to parabolic
equations like

(6) ut − div (a(x, t, Du)) + g(x, t, u) = f ,

posed in Q = {(x, t) : x ∈ RN , 0 < t < ∞}. Details of this adaptation are given in [BGV].
1. Structure assumptions

In subsequent sections we will study equations of the form

(E2) −div A(x,Du) + g(x, u) = f .

Here u(x) and f(x) are scalar functions of x ∈ RN and Du denotes the gradient of u.
Given a function f in L1

loc(R
N ) we look for a global weak solution to (E2), i.e. a function

u ∈ W 1,1
loc such that both A(x, Du) and g(x, u) are well defined in L1

loc(R
N ) and (1.1) is

satisfied in D′(RN ).

Both A and g have to satisfy certain structural assumptions which are modelled on
equation (E1) of previous section. More precisely, A satisfies:

(A1) A(x, ξ) : RN × RN → RN is measurable in x ∈ RN for any fixed ξ ∈ RN and
continuous in ξ ∈ RN for a.e. x ∈ RN .

(A2) There exist two constants p > 1 and c > 0 such that for all ξ and a.e. x

A(x, ξ) · ξ ≥ c|ξ|p .
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(A3) There exist functions b(x), locally in Lp′ (p′ = p/(p−1)), and d(x), locally bounded,
such that for all ξ and a.e. x

|A(x, ξ)| ≤ b(x) + d(x)|ξ|p−1 .

(A4) There exist a real number λ > 1 and a measurable function β(x, ξ, η) such that for
a.e. x ∈ RN and all (ξ, η) ∈ RN ×RN

(A(x, ξ)−A(x, η)) · (ξ − η) ≥ |ξ − η|λ
β(x, λ, η)

Moreover, β has to satisfy

0 ≤ β(x, ξ, η) ≤ d(x)(|ξ|γ + |η|γ) + e(x)λ−1 ,

for some function e ∈ L1
loc(R

N ) and some number γ which satisfies: 0 ≤ γ ≤ λ− 1
if p ≤ p0, 0 ≤ γ ≤ (λ− 1)q0 if p0 < p ≤ N , 0 ≤ γ ≤ (λ− 1)p if p > N .

Hypotheses (A1)-(A3) are classical in the study of nonlinear operators in divergence
form, see [LL], [L]. Hypothesis (A4) is more technical (see [BG]). The model example of a
function satisfying (A1)-(A4) is of course A(x, ξ) = |ξ|p−2ξ (in this case (A4) is satisfied
with λ = p, γ = 0 if p ≥ 2, and with λ = 2, γ = 2− p if 1 < p < 2).

The assumptions on g are the following:

(G1) g(x, σ) : RN×R → R is measurable in x ∈ RN for any fixed σ ∈ R and continuous
in σ for a.e. x.

(G2) There exists s > 0 such that for all σ and almost every x

g(x, σ) sign (σ) ≥ |σ|s .

(G3) For all t > 0 the function

Gt(x) = sup
|σ|≤t

|g(x, σ)|

is locally integrable over RN .

Remark. We have formulated our growth assumptions on A and g in terms of powers
for convenience. In that sense, it is worth noticing that our results hold with minor
modifications for more general growth assumptions. Thus, condition (G2) can be replaced
by

g(x, σ)sign (σ) ≥ h(σ)
7



with h : R → R a continuous odd function. Then Theorem 1 is still valid if we replace the
condition s > p− 1 by the following assumptions on h: h(t)t1−p is increasing in R+ and

∫ ∞ dt

t
p

2p−1 h(t)
1

2p−1
< ∞ .

This condition does not seem to be optimal. The exact condition is probably
∫ ∞ dt

t1/ph(t)1/p
< ∞ ,

which is weaker; this latter condition has been proved to work for equation (E1) with p = 2
in [GM].

2. Local estimates
We want to solve (E2) in RN for general f ∈ L1

loc(R
N ). Our idea is to begin by solving

(E2) in the balls BR = {x ∈ RN , |x| < R} with suitable data fn which approximate f . If
we obtain estimates which are independent of R and the approximation fn, we can then
pass to the limits R → ∞ and fn → f to obtain a solution of the original problem. We
will assume in this section that conditions (A1)-(A4) and (G1)-(G2) hold. In fact, only a
weak version of (A4) is necessary at this stage.

To begin our program we observe the well-known fact that for any f ∈ Lp′(BR) with
p′ = p/(p− 1) there exists a unique u ∈ W 1,p

0 (BR) solution of

(2.1) −div (A(x, Du)) + g(x, u) = f in D′(BR).

Indeed one has g(x, u) ∈ L1(BR) and

(2.2)
∫

BR

A(x,Du) ·Dv dx +
∫

BR

g(x, u)v dx =
∫

BR

fv dx

holds for all v ∈ W 1,p
0 (BR) ∩ L∞(BR) (see for instance [W], [BB]). For these solutions we

obtain local estimates for u and Du with convenient dependence on the data.

LEMMA 2.1. Assume that s > p−1, consider a radius R > 0 and a function f ∈ Lp′(BR)
and let 0 < 2r < R. If u ∈ W 1,p(BR) is the solution of (2.1), then we can estimate

(2.3) ‖u‖Ls(Br) ≤ ‖g(x, u)‖L1(Br) ≤ C ,

where the constant C depends only on the parameters p and s, the radius r, the norm
‖f‖L1(B2r) of the data, and the structure conditions. These latter appear through the ellip-
ticity constant c and the norms ‖b‖L1(B2r) and ‖d‖L1(B2r) and ‖G1‖L1(Br). In particular,
the estimate is independent of R. Moreover, for every m > 0 there exists Cm depending
on the same arguments plus m, such that

(2.4)
∫

Br

|Du|p
(|u|+ 1)m+1

dx ≤ Cm .
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Demostracin. For m > 0 we define the function φ = φm : R → R by

(2.5)

{
φ(σ) = m

∫ σ

0
dt

(t+1)m+1 if σ ≥ 0

φ(σ) = −φ(−σ) if σ < 0

Notice that |φ(σ)| ≤ ∫∞
0

m(t + 1)−(m+1) dt = 1. We apply identity (2.2) to our solution u
taking as test function

(2.6) v = φm(u) θα ,

where m and α are two numbers such that

0 < m <
s

p− 1
− 1 , α ≥ ps

s− (m + 1)(p− 1)
,

(observe that α > p); θ is a smooth function with compact support in B2r, such that
0 ≤ θ ≤ 1 and θ ≡ 1 on Br and |Dθ| ≤ 2/r.

Thanks to the structure assumptions (A2), (A3), we obtain

c

∫
|Du|pφ′(u)θα dx +

∫
g(x, u)φ(u)θα dx =

∫
fφ(u)θα dx− α

∫
A(x,Du)φ(u)θα−1 ·Dθ dx ≤

C1 + C2

∫
|Du|p−1θα−1dx ,

with C1 = ‖f‖L1(B2r)+(2α/r)‖b‖L1(B2r) and C2 = (2α/r)‖d‖L∞(B2r). In order to estimate
the last term we use Young’s inequality

(2.7) ab ≤ an

n
+

bn′

n′
,

which is true for every a, b > 0 and every pair of conjugate numbers n, n′ > 1. Therefore,
taking n = p′ we may write

|Du|p−1θα−1 ≤ ε
|Du|pθα

p′(|u|+ 1)m+1
+

1
pεp−1

θα−p(|u|+ 1)(m+1)(p−1) ,

where ε can be any positive number. Choosing ε ≤ cp′m/(2C2) and recalling that φ′(u) =
m(|u|+ 1)−(m+1) we arrive at

(2.8)

cm

2

∫ |Du|p
(|u|+ 1)m+1

θα dx +
∫

g(x, u)φ(u)θα dx ≤

C1 + C3

∫
(|u|+ 1)(m+1)(p−1)θα−p dx

9



with C3 = C2/(pεp−1) = k(p,m)c1−pCp
2 . We designate by k(. . . ), various constants de-

pending on numerical parameters to be specified, never on R.

The last term in (2.8) has to be transformed. Let µ = (m+1)(p−1). Since m < s
p−1−1,

one has µ < s, and then, using again the inequality (2.7) with n = s/µ, we get that for
any δ > 0

θα−p(|u|+ 1)µ ≤ δµ

s
θα(|u|+ 1)s +

s− µ

sδµ/(s−µ)
θα− ps

s−µ .

Since the exponent α− ps
s−µ is nonnegative we conclude that

(2.9) θα−p(|u|+ 1)(m+1)(p−1) ≤ 2sδµ

s
θα|u|s + k(µ, s)(δ

µ
µ−s + δ) .

In order to absorb the resulting term in |u|s into the term in the first member of (2.9)
involving g(x, u) we observe that g(x, σ)φ(σ) is always nonnegative. Moreover, thanks to
(G2) we have for σ ≥ 1 g(x, σ)φ(σ) ≥ |σ|sφ(1) (φ(1) = 1− 2−m). Summing up, we get for
all u

(2.10) |u|s ≤ g(x, u)
φ(u)
φ(1)

+ 1 .

Using this inequality in (2.9) and setting δ = sφ(1)/(2s+1µC3) we transform (2.8) into

(2.11)
cm

2

∫ |Du|p
(|u|+ 1)m+1

θαdx +
1
2

∫
g(x, u)φ(u)θαdx ≤ C4 ,

with C4 = C1 + k(m, s, µ)rN (C
s

s−µ

3 + 1). Since both terms in the left-hand side of (2.11)
are nonnegative, the bound C4 applies to each of them. Together with (G2), (G3) and the
definitions of φ and θ, this gives

(2.12)
∫

Br

|u|sdx ≤
∫

Br

|g(x, u)|dx ≤ C5,

where C5 = ‖G1‖L1(Br) + 2C4/φ(1), which gives estimate (2.3), and

(2.13)
∫

Br

|Du|p
(|u|+ 1)m+1

dx ≤ 2C4

cm
,

which gives (2.4) for 0 < m < s
p−1 − 1. Since for (|u| + 1)−1 ≤ 1, once (2.4) holds for all

small m > 0 it holds for every m > 0 . #

Remark. We may write the constant C of estimate (2.3) in the form

(2.14) C = a0‖f‖L1(B2r) + a1‖b‖L1(B2r) + a2‖d‖β
L1(B2r) + ‖G1‖L1(Br) + a3 ,

where a0 and β are positive constants depending only on p, s, a1 and a3 depend also on
r, and a2 depends on p, s, r and c. A similar expression holds for Cm, but now all the
coefficients depend also on c and m and the term in ‖G1‖ does not appear. #

Estimate (2.4) gives an indirect control on the gradient Du of our solutions. We can
obtain a direct estimate by means of Sobolev’s inequality.
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LEMMA 2.2. Assume that p > 1, s > 0 and u is a function in W 1,1(Br), r > 0, such
that

(2.15)
∫

Br

|u|sdx ≤ C1,

for a some C1, and that for all m > 0

(2.16)
∫

Br

|Du|p
(|u|+ 1)m+1

dx ≤ C2 ,

where C2 may depend on m. Then one has

i) If p0 < p ≤ N , then for any 1 ≤ q < q0 |Du| ∈ Lq(Br) and u ∈ Lq∗(Br), where
q∗ = qN/(N − q). Observe that q∗0 = r0.

ii) If p > N , then u is bounded in Br and |Du| ∈ Lp(Br).

In both cases the corresponding norms can be estimated in terms of C1 and C2(m), where
m must be small enough. In case ii) we only need (2.16) to be true for some m < p− 1.

Demostracin. Part i) We assume that p ∈ (p0, N ], so that in particular N > 1. Let
1 ≤ q ≤ q0 (q0 ∈ (1, N ] has been defined in formula (2) of the Introduction). We choose
m such that 0 < m < m0 = (q0 − q)N−1

N−q (note that m0 > 0 and that m0 → 0 as q → q0).

Since q < q0 ≤ p one has, by Hölder’s inequality,

(2.17)
∫

Br

|Du|qdx ≤ (
∫

Br

|Du|p
(|u|+ 1)m+1

dx)q/p(
∫

Br

(|u|+ 1)(m+1) q
p−q dx)

p−q
p

We have chosen m0 so that m < m0 is equivalent to (m+1) q
p−q < q∗. Hence we may write

for every ε > 0,
(|u|+ 1)(m+1) q

p−q ≤ ε|u|q∗ + c(ε) .

Choosing ε > 0 small enough and using (2.16) we arrive at

(2.18)
∫

Br

|Du|qdx ≤ 1
2q+1

(
∫

Br

|u|q∗dx)
p−q

p + C3.

Since q < N one also has the classical Sobolev-type inequality

‖u− ũr‖Lq∗ (Br) ≤ ‖Du‖Lq(Br) ,

where ũr = (meas (Br))−1
∫

Br
udx. This implies

(2.19) ‖u‖Lq∗ (Br) ≤ (
∫

Br

|Du|qdx)1/q + (meas Br)1/q∗ |ũr| .
11



Now, by (2.15), we have when s ≥ 1

|ũr| ≤ 1
meas (Br)

∫

Br

|u| dx ≤ C4 ,

while for 0 < s < 1

|ũr| ≤ 1
meas (Br)

(
∫

Br

|u|βηdx)1/η(
∫

Br

|u|(1−β)η′dx)1/η′ ≤ C5(
∫

Br

|u|q∗dx)
1−s

q∗−s ,

with η = q∗−s
q∗−1 > 1 and β = s

η < 1, so that βη = s and (1− β)η′ = q∗. In both cases, one
has

(2.20) |ũr| ≤ C6‖u‖δ
Lq∗ (Br),

for some 0 ≤ δ < 1. (2.18) , (2.19) and (2.20) yield

(2.21) ‖u‖Lq∗ (Br) ≤
1
2
(
∫

Br

|u|q∗dx)
p−q
pq + C7‖u‖δ

Lq∗ (Br) + C8 .

Since δ < 1 and p−q
pq < 1

q∗ if p < N , p−q
pq = 1

q∗ if p = N , (2.21) implies that ‖u‖Lq∗ (Br) ≤
C9. It then follows from (2.18) that ‖Du‖Lq(Br) ≤ C10. This ends Part i).

Part ii) We now choose m such that 0 < m < p− 1. Let φ(u) = (|u|+ 1)
p−m−1

p . Then

|Dφ(u)| = (p−m− 1)|Du|
p(|u|+ 1)

m+1
p

.

The bound (2.16) is equivalent to Dφ(u) ∈ Lp(Br). Since p > N we obtain Lipschitz
continuity of φ(u) in Br. Using (2.15) we then obtain an L∞-bound for φ(u), and therefore
for u, in Br. The bound for ‖Du‖ follows then immediately from (2.16). This proves part
ii) of Lemma 2.2. #

The regularity of u can be improved when s is very large by using in a more essential
way the estimate |u|s ∈ L1(Br). This is a kind of interpolation result.

LEMMA 2.3. Under the above hypotheses (2.15), (2.16), if moroever s(p− 1) > 1, then
|Du| ∈ Lq(Br) for any 1 < q < q1. The norm ‖Du‖Lq depends on C1 and C2(m)with m
small enough.

Proof. Let 1 < q < q1 = ps
s+1 . We choose

0 < m ≤ m1 =
s(p− q)

q
− 1 =

(q1 − q)
q

(s + 1) .
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We have m1 > 0 since q < q1 and m1 → 0 as q → q1. Since q < q1 < p we can write

(2.22) |Du|q ≤ |Du|p
(|u|+ 1)m+1

+ C(|u|+ 1)
m+1
p−q q.

Now, m < m1 implies that (m + 1) q
p−q ≤ s, and we deduce from (2.15), (2.16) and (2.22)

that ∫

Br

|Du|qdx ≤ C3. #

3. Proof of Theorem 1
We assume that A and g satisfy hypotheses (A) and (G), that p0 < p ≤ N and s > p−1.

We have data f ∈ L1
loc(R

N ). For n ≥ 1 we set fn = inf(|f |, n)sign (f), and we let
un ∈ W 1,p

0 (Bn) be the unique solution of

(3.1) −div (A(x, Dun)) + g(x, un) = fn in D′(Bn) .

Then for all v ∈ W 1,p
0 (Bn) ∩ L∞(Bn)

(3.2)
∫

Bn

A(x, Dun) ·Dvdx +
∫

Bn

g(x, un)vdx =
∫

Bn

fnv dx .

Let r > 0 and 1 < q < q0. By Section 2 (Lemmas 2.1 and 2.2) we know that for any r
with n > 2r there exist constants Ci independent of n such that

‖g(x, un)‖L1(Br) ≤ C1

‖Du‖Lq(Br) ≤ C2

‖un‖Lq∗ (Br) ≤ C3 .

Therefore, and up to extraction of a subsequence if necessary, we may assume that

(3.3) the sequence un converges to a function u weakly in W 1,q(Br) for any 1 ≤ q < q0

and any r > 0 and un → u almost everywhere in RN , while

(3.4) g(x, un) converges to g(x, u) a.e. in RN .

Furthermore, one has
fn → f in L1(Br) for any r > 0.

In order to prove that u is a solution of (E2) two difficulties remain:

(i) Passing to the limit in the nonlinear term g(x, un).

(ii) Passing to the limit in div (A(x,Dun)) when A is nonlinear with respect to its second
argument.
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In order to successfully perform both limit processes, we shall first obtain local equi-
integrability of g(x, un) and a.e. convergence of Dun to Du.

Let t > 0, and r > 0. We define φ : R → R by

(3.5)
{

φ(s) = inf((s− t)+, 1), s ≥ 0
φ(s) = −φ(−s), s < 0 .

Let θ be a cutoff function as in (2.6), Section 2. We take v = φ(un)θ in formula (3.2) to
obtain ∫

En,t+1∩Br

|g(x, un)| dx ≤
∫

En,t∩B2r

|fn| dx + C1

∫

En,t∩B2r

(|Dun|p−1 + b) dx,

where En,t denotes the set {(x, t) : |un(x, t)| ≥ t}. Here and in the sequel the Ci denote
different constants which do not depend on n.

Using the Lq(B2r)-bound on |Dun| for some q ∈ (p− 1, q0) we obtain for some δ > 0,

(3.6)
∫

En,t+1∩Br

|g(x, un)|dx ≤
∫

En,t∩B2r

(|f |+ |b|) dx + C2(meas (En,t ∩B2r))δ .

Since, due to the L1(B2r)-bound on un, meas (En,t ∩ B2r) → 0 as t → +∞ uniformly
with respect to n, and f, b ∈ L1(B2r), we deduce from (3.6) that, given ε > 0 there exists
t0 such that for all r < n/2 and t ≥ t0

(3.7)
∫

En,t+1∩Br

|g(x, un)| dx ≤ ε

and t0 is independent of n.
(3.7) and (G3) give equi-integrability of g(x, un) on Br: for all ε > 0 there exists η > 0

such that whenever a subset A ⊂ Br has measure less than η, then
∫

A
|g(x, un)| ≤ ε.

From this, (3.4) and Vitali’s theorem we obtain the convergence

(3.8) g(x, un) → g(x, u) in L1(Br) for all r > 0 .

It remains to prove a.e. convergence of Dun to Du. Let r > 0 and ε > 0. We define
another function ψ by

(3.9)
{

ψ(s) = inf(s, ε) s ≥ 0
ψ(−s) = −ψ(s) s ≥ 0 .

Applying (3.2) both to un and um with test function v = ψ(un − um)θ, and with
n,m ≥ 4r, subtracting and using (A3), we obtain (with hn = fn − g(x, un))
∫

{|un−um|≤ε}∩Br

(A(x,Dun)−A(x,Dum)) · (Dun −Dum) dx ≤ ε

[∫

B2r

(|hn|+ |hm|) dx+

+C3

∫

B2r

(|Dun|p−1 + |Dum|p−1 + 2b) dx

]
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Using (A3), the L1(B2r)-bound on fn and g(x, un), and the Lq(B2r)-bound on Dun for
some q ∈ [p− 1, q0), we obtain

∫

{|un−um|≤ε}∩Br

(A(x,Dun)−A(x,Dun)) · (Dun −Dum) dx ≤ εC4.

Applying (A4) this gives

(3.10)
∫

{|un−um|≤ε}∩Br

|Dun −Dum|λ
β(x, Dun, Dum)

dx ≤ εC4.

Now

(3.11)

∫

Br

|Dun −Dum| dx ≤
(∫

{|un−um|≤ε}∩Br

|Dun −Dum|λ
β(x,Dun, Dum)

dx

)1/λ

·
(∫

Br

β(x,Dun, Dum)
1

λ−1 dx

)1− 1
λ

+
∫

{|un−um|≥ε}∩Br

|Dun −Dum| dx .

Recall the assumption (A4) on β and observe that, since γ ≤ (λ−1)q0 we have a uniform
Lq(Br)-bound on |Dun| for some q ≥ γ

λ−1 . On the other hand, the fact that un → u in
L1

loc(R
N ) implies that meas ({|un − um| ≥ ε} ∩ Br) → 0 as n,m → +∞. Using these

observations, we deduce from (3.10) and (3.11) that for every r > 0

(3.12)
∫

Br

|Dun −Dum| dx → 0, as n,m → +∞ .

This implies that, possibly after extraction of a subsequence

Dun → Du a.e. in RN ,

and for any q ∈ (1, q0)

(3.13) Dun → Du in Lq
loc(R

N ) .

Therefore

(3.14) A(x, Dun) → A(x,Du) in L1
loc(R

N ) .

(3.8) and (3.14) allow us to claim that u is a solution of (E2). Furthermore if f ≥ 0 a.e.
on has un ≥ 0 a.e. for any n ∈ N∗ and therefore u ≥ 0 a.e. The proof of Theorem 1 is
complete.
4. Other existence results and improved regularity

We consider equation (E2) under the conditions (A) and (G).
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Proof of Theorem 2. Let p > N and let un be as in the proof of Theorem 1, namely one
has un ∈ W 1,p

0 (Bn) and

(4.1)
∫

Bn

A(x, Dun) ·Dv dx +
∫

Bn

g(x, un)v dx =
∫

Bn

fnv dx,

holds for all v ∈ W 1,p
0 (Bn)∩L∞(Bn). By Lemmas 2.1 and 2.2, we have for any r > 0 such

that n > 2r,
‖un‖L∞(Br) ≤ C1 , ‖Dun‖Lp(Br) ≤ C1 .

Then, and up of an extraction subsequence, we can assume that for any r > 0

(4.2) un → u weakly in W 1,p(Br) and also a.e. in RN .

Together with (G3) and the dominated convergence theorem, this implies that

(4.3) g(x, un) → g(x, u) in L1
loc(R

N ) .

We prove a.e. convergence of Dun to Du exactly as in Theorem 1 (Notice that γ
λ−1 ≤ p,

and that the Lp-bound on Dun gives an L1-bound on |Dun|p−1). Then we have u ∈
W 1,p

loc (RN ) and

(4.4) A(x, Dun) → A(x,Du) in L1
loc(R

N ) .

From (4.1), (4.3) and (4.4) we deduce that u is a solution of (E2). #

Proof of Theorem 3. We now assume that 1 < p ≤ p0 and s(p−1) > 1. We begin with the
construction of the solutions un as in Theorems 1 and 2. By Lemmas 2.1 and 2.3 (notice
that s > p− 1) we have for any r > 0, 1 < q < q1 and n > 2r, the estimate

‖Dun‖Lq(Br) ≤ C2,

and then, since q < s and using the L1(Br)-bound on |un|s,

‖un‖Lq(Br) ≤ C3.

Then we can assume (up to extraction of a subsequence) that for every r > 0 and every
q ∈ (1, q1)

(4.5) un → u weakly in W 1,q(Br) and a.e. in RN ,

and

(4.6) g(x, un) → g(x, u) a.e. in RN .
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Furthermore, one has

(4.7) fn → f in L1
loc(R

N ) .

We prove local equi-integrability of g(x, un) as in the proof of Theorem 1 ; we have only
to notice that p− 1 < 1 and use the L1(B2r)-bound on |Dun|, the L1(B2r)-bound on |un|,
(4.7) and (G3). With (4.6), this gives

(4.8) g(x, un) → g(x, u) in L1
loc(R

N ) .

We prove a.e. convergence of Dun to Du much as in Theorem 1. We use the L1(Br)-
bound on |Dun|, and the fact that γ/(s− 1) ≤ 1. We then use the fact that meas ({|un −
um| ≥ ε}∩Br) → 0 as n,m → +∞ (this is due to the convergence of un to u in L1

loc(R
N )),

and finally the Lq(Br)-bound on |Dun| with 1 < q < q1, to deduce that
∫

Br

|Dun−Dum| →
0 as n,m → +∞. Then one has

(4.9) A(x, Dun) → A(x,Du) in L1
loc(R

N ) ,

as a consequence of a.e. convergence of Dun to Du and the Lq(Br)-bound on A(x, Dun)
for some q > 1 and any r > 0.

We then conclude that u is a solution of (E2). #

We end the section with the question of improved regularity. We assume that p0 < p <
N and s > r0 and use the estimate of |u|s in L1

loc to obtain better regularity for |Du|, as
stated in Theorem 4.

Proof of Theorem 4. It is an easy consequence of Lemma 2.3 since s > r0 and p > p0

implies s > 1/(p− 1).

Let un be as in the proof of Theorem 1. Recalling Section 3 we know that (up to
extraction of a subsequence) un converges to a solution u of (E2). Part iii) of Lemma 2.2
gives an Lq(Br)-bound on Dun for any q ∈ [1, q1) and any r > 0. We then conclude that
Du ∈ Lq

loc(Br) for any q ∈ [1, q1) and r > 0. This ends the proof. #

5. Necessary growth condition on f if s ≤ p− 1
In this section we consider for f ∈ L1

loc(R
N ), f ≥ 0 the model equation

(5.1) −∆pu + |u|s−1u = f in D′(RN )

and show that when 0 < s ≤ p−1 one needs some growth condition on f in order to obtain
existence of a nonnegative solution for (5.1). For simplicity we consider the case where f
and u are radially symmetric. In this sense the condition s > p−1 is optimal in Theorem 1.
In particular, if f is a nonnegative radially symmetric function, the sequence (un)n defined
in the proof of Theorem 1 is a nondecreasing sequence of radially symmetric nonnegative
funtions (we recall that un is the weak solution of (5.1) with Dirichlet boundary condition
un = 0). The eventual convergence of this sequence will provide a radially symmetric
nonnegative solution of (5.1). The following proposition asserts the nonexistence of such
a solution for some f ′s with fast growth as |x| → ∞ if 0 < s ≤ p− 1.
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Proposition 5.1. Let p > 1 and 0 < s ≤ p − 1. Let f be a nonnegative and radially
symmetric function belonging to L1

loc(R
N ). Assume that (5.1) has a nonnegative radially

symmetric solution u (in the sense defined in Section 1, that is u ∈ W 1,1
loc (RN ), |Du|p−1 ∈

L1
loc(R

N ), us ∈ L1
loc(R

N ) and (5.1) is satisfied in the sense of distributions in RN ). Then
there exists C1 (not depending on r) such that

1
rN

∫

Br

f dx ≤ C1 r
ps

p−s−1 ,

for all r ≥ 1 if 0 < s < p− 1, while for s = p− 1

1
rN

∫

Br

f dx ≤ eCr, for all r ≥ 1 .

Proof. Under the hypotheses of Proposition 5.1, we consider u and f as functions of r = | x|.
One has u ∈ W 1,1

loc (0,∞). Thus u is continuous on (0,∞), a.e. differentiable and one has
u(b)− u(a) =

∫ b

a
u′(r)dr for any 0 < a < b < ∞. Equation (5.1) gives

−(|u′|p−2u′rN−1)′ + usrN−1 in D′(′,∞).

(Notice that |u′|p−2u′ rN−1 ∈ L1
loc(0,∞), usrN−1 ∈ L1

loc(0,∞) and f rN−1 ∈ L1
loc(0,∞)).

Then one has
|u′|p−2u′ rN−1 ∈ W 1,1

loc (0,∞).

Thus |u′|p−2u′rN−1 is continuous in (0,∞) and a.e. differentiable and

(5.2) −|u′(r)|p−2u′(r)rN−1 + |u′(1)|p−2u′(1) =
∫ r

1

(f(σ)− us(σ))σN−1dσ

for all r ≥ 1. Setting C2 = |u′(1)|p−1, and using f ≥ 0 this gives

(5.3) u′(r) ≤
(

1
rN−1

(C2 +
∫ r

1

us(σ)σN−1dσ)
)1/p−1

.

for all r ≥ 1. Integrating (5.3) between 1 and r > 1, we obtain

(5.4) u(r) ≤ u(1) + z(r) for all r ≥ 1

with

(5.5) z(r) =
∫ r

1

[
1

tN−1
(C2 +

∫ t

1

us(σ)σN−1dσ)]
1

p−1 dt .

z is a nondecreasing, continuously differentiable function on [1,∞). One has z(1) = 0, and

(5.6) z′(r) =
(

1
rN−1

(C2 +
∫ r

1

us(σ)σN−1dσ)
) 1

p−1
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for all r > 1. By (5.6), z′ is a.e. differentiable on (1,∞), and with (5.4), one has

(rN−1(z′(r))p−1)′ = us(r)rN−1 ≤ (u1 + z(r))srN−1

for a.e. r > 1 (with u1 = u(1)) . Multiplying by z′ (notice that z′ ≥ 0) we deduce that

z′(r)
rN−1

(rN−1(z′(r))p−1)′ ≤ (u1 + z(r))sz′(r)

for a.e. r > 1, i.e.

(5.7) (p− 1)z′(r)p−1z′′(r) +
N − 1

r
(z′(r))p ≤ (z(r) + u1)sz′(r)

for a.e. r > 1 . Since N−1
r (z′(r))p ≥ 0, we deduce from (5.7) that

p− 1
p

((z′(r))p)′ ≤
(

(z(r) + u1)s+1

s + 1

)′

for a.e. r > 0. The function (z′)p belongs to W 1,1(1, r) for any r > 1 (see (5.6)). We can
integrate the preceding inequality, and obtain

p− 1
p

[z′(r)p − z′(1)p] ≤ (z(r) + u1)s+1

s + 1
− us+1

s + 1

for all r ≥ 1. Therefore, there exists C3 (depending on p, z′(1), u1, s, but not on r), such
that

(5.8) (z′(r))p ≤ C3(z(r))s+1 + C3

for all r ≥ 1. We now distinguish the two cases: s < p− 1 and s = p− 1.

First Case: s < p− 1. From (5.8) we deduce

(5.9) z(r) ≤ C4r
p

p−s−1

for all r ≥ 1. Thus by (5.4), if r ≥ 1

(5.10) u(r) ≤ u1 + z(r) ≤ C5r
p

p−s−1 .

We set
U(r) =

1
rN−1

∫ r

1

us(σ)σN−1dσ, F (r) =
1

rN−1

∫ r

1

f(σ)σN−1dσ .

(5.2) gives for r ≥ 1
0 ≤ F (r) ≤ U(r) + C2 − |u′(r)|p−2u′(r) ,
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from which we get

F (r)
1

p−1 ≤ (2
1

p−1 + 1)(U(r) + C2)
1

p−1 − 2
1

p−1 u′(r) .

Integrating between 1 and r and recalling that u(r) ≥ 0, we obtain

∫ r

1

F (σ)
1

p−1 dσ ≤ (2
1

p−1 + 1)
∫ r

1

(U(σ) + C2)
1

p−1 dσ + 2
1

p−1 u1

for all r ≥ 1. With (5.10) and the definition of U , this gives

(5.11)
∫ r

1

(F (σ))
1

p−1 dσ ≤ C6r
δ

with δ = ( ps
p−s−1 + 1) 1

p−1 + 1. From (5.11) we can deduce the conclusion of Proposition
5.1 (in the case s < p− 1). Indeed (5.11) yields, for instance,

r−
N−1
p−1

∫ r

1

(
∫ σ

1

f(t)tN−1dt)1/p−1dσ ≤ C6r
δ

for all r ≥ 1, and then, since σ → ∫ σ

1
f(t)tN−1dt is nondecreasing,

r−
N−1
p−1

r

2
(
∫ r/2

1

f(t)tN−1dt)
1

p−1 ≤ C6r
δ

for all r ≥ 2. Thus, we have

(
∫ r

1

f(t)tN−1dt)
1

p−1 ≤ C7r
δ−1+ N−1

p−1

i.e. ∫ r

1

f(t)tN−1dt ≤ C8r
(δ−1)(p−1)+N−1

for all r ≥ 1. Since (δ − 1)(p− 1) + N − 1 = ps
p−s−1 + N , we obtain Proposition 5.1 when

s < p− 1.

Second case: s = p− 1. In this case (5.8) gives

(5.12) z(r) ≤ eC9r , for all r ≥ 1 .

Using the same method as for the case s < p− 1, we easily deduce that u(r) ≤ eC10r, and
then ∫ r

1

f(t)tN−1dt ≤ eC11r , for all r ≥ 1.

This gives Proposition 5.1 in the case s = p− 1. #
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In the preceding proposition we have proved the nonexistence of a nonnegative, radially
symmetric solution u of (5.1), when f is a nonnegative radially symmetric funtion, “too
rapidly” increasing as r → ∞. The hypothesis of nonnegativity of u is essential for this
result. Indeed, it is well known that, for instance in the case p = 2, s = p − 1 = 1, the
equation −∆u + u = f in D′(RN ) has infinitely many solutions for any f ∈ L1

loc(R
N ).

Our proposition shows that these solutions have changing sign when f ≥ 0 a.e. and f is
“too rapidly” increasing as r →∞.

The hypothesis of radial symmetry of u can be eliminated when u is regular. In fact,
if p > p0 = 2 − 1

N and we assume some additional regularity on u (which happens for
instance if f is regular) we prove below that the existence of a nonnegative solution u
of (5.1) (with f ≥ 0 radially symmetric) implies the existence of a nonnegative radially
symmetric solution of (5.1). If moreover s ≤ p − 1, we can then apply Proposition 5.1
to deduce that a growth restriction on f is necessary for existence of any nonnegative
solution. Our result is

Proposition 5.2. Let p > p0, s > 0 and let f be a nonnegative radially symmetric function
belonging to L1

loc(R
N ). Assume that (5.1) has a nonnegative solution u ∈ W 1,p

loc (RN ) with
us ∈ L1

loc(R
N ). Then (5.1) has a nonnegative radially symmetric solution (in the sense

defined in Section 1).

Proof. One has f ≥ 0, f radially symmetric, f ∈ L1
loc(R

N ). Let u ∈ W 1,p
loc (RN ), u ≥ 0 a.e.,

such that us ∈ L1
loc(R

N ), and

−div (|Du|p−2Du) + us = f in D′(RN ) .

Then for any n ∈ N∗ one has (using a density argument)

(5.13)
∫

Bn

|Du|p−2Du.Dφ dx +
∫

Bn

usφdx =
∫

Bn

fφdx

for all φ ∈ W 1,p
◦ (Bn)∩L∞(Bn). Let fn = inf(|f |, n)sign (f) and let un ∈ W 1,p

0 (Bn) be the
(unique) solution of

(5.14) −div (|Dun|p−2Dun) + us
n = fn in D′(Bn).

We recall that existence and uniqueness are well known (see, for instance, [W], [BB]), and
one also has:

un ≥ 0 a.e. in Bn(5.15)

us
n ∈ L1

loc(R
N )(5.16)

un radially symmetric(5.17) ∫

Bn

|Dun|p−2DunDφdx +
∫

Bn

us
nφdx =

∫

Bn

fnφdx,(5.18)

21



for all φ ∈ W 1,p
0 (Bn) ∩ L∞(Bn). Let ψ ∈ C1(R,R), such that ψ(s) = 0 if s ≤ 0, ψ′(s) > 0

if s > 0 and ψ and ψ′ are bounded. By classical results one has ψ(un− u) ∈ W 1,p
0 (Bn) (in

particular, since u ≥ 0 and un = 0 on ∂Bn), and Dψ(un − u) = ψ′(un − u)D(un − u).

Choosing φ = ψ(un − u) in (5.13) and (5.18), we then obtain (notice that fn ≤ f)
(5.19)∫

Bn

(|Dun|p−2Dun−|Du|p−2Du)ψ′(un−u)(Dun−Du)dx+
∫

Bn

(us
n−us)ψ(un−u)dx ≤ 0

Then, we necessarily have

(5.20) un ≤ u a.e. in Bn .

By a similar argument we also have

(5.21) un ≤ un+1 a.e. in Bn .

With (5.20) and (5.21) we deduce that

(5.22) un → v a.e. in RN and in Lp
loc(R

N ) .

Since 0 ≤ us
n ≤ us, we also have (by the Dominated Convergence Theorem)

(5.23) us
n → vs in L1

loc(R
N ) .

Furthermore, one has v > 0 a.e. and v is radially symmetric, like un. It remains to prove
that v ∈ W 1,1

loc (RN ), |Dv|p−1 ∈ L1
loc(R

N ) and v is a solution of (5.1). (We have to pass to
the limit in (5.18)). Firstly, we can use the Lp

loc(R
N )-bound on un (which is due to (5.20)

and the fact u ∈ Lp
loc(R

N )) in order to obtain local estimates on |Dun| by a way similar
to that of Lemma 2.1 and Lemma 2.2 of Section 2.

Indeed, let φ : R → R be as in Lemma 2.1 (see (2.5)) for some 0 < m < 1/(p− 1). Let
r > 0 and θ be the cutoff function of Lemma 2.1 and let γ ≥ p. If for n > 2r we replace
in (5.18) φ by φ(un) θγ , we obtain

∫
|Dun|pφ′(un)θγdx +

∫
us

nφ(un)θγdx ≤ C1 + C2

∫
|Dun|p−1θγ−1dx

(the Ci’s do not depend on n). As in Lemma 2.1 we then deduce that

1
2

∫
|Dun|p θγ

(un + 1)m+1
dx +

∫
us

nφ(un)θγdx ≤ C1 + C3

∫
θγ−p(un + 1)(m+1)(p−1)dx

since (m + 1)(p− 1) ≤ p, γ ≥ p, we use the Lp(B2r)-estimate on un to deduce

(5.24)
∫

Br

|Dun|
(un + 1)m+1

dx ≤ C4
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Thus, by Lemma 2.2, we deduce if p0 < p ≤ N , for any 1 ≤ q < q0,

(5.25)
∫

Br

|Dun|qdx ≤ C5 ,

while for p > N

(5.26)
∫

Br

|Dun|pdx ≤ C5.

Therefore, we have

(5.27) un → v weakly in W 1,q(Br)

for any r > 0 with any q ∈ [1, q0) if p0 < p ≤ N , and q = p if p > N . Then we prove the
a.e. convergence of Dv as in Theorem 1 and 2. This gives

(5.28) |Dun|p−2Dun → |Dv|p−2Dv in L1
loc(R

N ) .

With (5.28) and (5.23) we can pass to the limit in (5.18) and obtain

−div (|Dv|p−2Dv) + vs = f in D′(RN ) .

This proves Proposition 5.2. #

6. Problem on a Bounded Domain

Let Ω be a bounded open set of RN , N ≥ 1. We are interested in the following problem

−div (A(x,Du)) + g(x, u) = f in Ω(6.1)

u = 0 on ∂Ω ,(6.2)

where f ∈ L1(Ω). The map A verifies the set of hypotheses (A1’)-(A4’) obtained from
(A1)-(A4) of Section 1 by replacing x ∈ RN by x ∈ Ω and the spaces Lr

loc(R
N ), 1 ≤ r ≤ ∞

by Lr(Ω). The function g verifies the set of hypotheses (G1’)-(G3’) obtained from (G1)-
(G3) in the same way (in (G3’) we assume that Gt ∈ L1(Ω)). We recall that the model
example is −∆pu + |u|s−1u = f .

Existence of solutions for such a problem is proved in [BG]:

Theorem ([BG]). Let A and g be as above, and let p0 = 2− (1/N) < p ≤ N . Then for
any f ∈ L1(Ω) there exists u, solution of (6-1)-(6.2) in the following sense: u ∈ W 1,q

0 (Ω)
for any 1 ≤ q < q0 = (p− 1) N

N−1 , g(x, u) ∈ L1(Ω) and

(6.3)
∫

Ω

A(x,Du) ·Dv dx +
∫

Ω

g(x, u)vdx =
∫

Ω

fv dx,

for all v ∈ W 1,r
0 (Ω) for some r > N .

Remarks. 1) In this existence result we only need a weaker condition than (G2’), namely
(G’2) g(x, σ)σ ≥ 0, for any σ ∈ R and a.e. x ∈ Ω.
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2) A similar existence result is true in the case p > N ; then u ∈ W 1,p
0 (Ω) (see [W],

[BB]). #

Here we want to improve on this existence theory by extending to problem (6.1)-(6.2)
two results proved precedently for equation (E2) in RN , namely the improved regularity
result when p0 < p < N and s > r0 (Theorem 4), and the existence for 1 < p ≤ p0

when s(p − 1) > 1 (Theorem 3). Though no essential differences appear, we will explain
it in some detail for the reader’s convenience. Let us begin with the question of regularity
improvement.

Theorem 5. Let A and g satisfy hypotheses (A1’)-(A4’) and (G1’)-(G3’) respectively, and
let p0 < p < N and s > r0 = N(p − 1)/(N − p). Then for any f ∈ L1(Ω) there exists u

satisfying (6.3) and such that u ∈ W 1,q
0 (Ω) for any 1 ≤ q < q1 = ps/(s + 1).

We recall that q1 > q0 since s > r0, see the Introduction.

Proof. The proof of the existence Theorem of [BG] recalled above relies on estimates for
some approximate solutions of (6.1)-(6.2). Passing to the limit in these estimates gives the
existence of a solution u of (6.3) with the additional properties (see [BG]).

∫

Ω

|g(x, u)|dx ≤ C1(6.4)
∫

Bn

|Du|pdx ≤ C2, for all n ∈ N,(6.5)

where C2 does not depend on n and Bn = {x ∈ Ω, n ≤ |u(x)| ≤ n + 1}. From (6.5) we
deduce, for any m > 0,

(6.6)

∫

Ω

|Du|p
(|u|+ 1)m+1

dx =
∞∑

n=0

∫

Bn

|Du|p
(|u|+ 1)m+1

dx ≤

≤ C2

∞∑
n=0

1
(n + 1)m+1

= C3 .

(C3 depends on m). From (6.4) and (G2’) we deduce that

(6.7)
∫

Ω

|u|sdx ≤ C4.

We have for any q < p

|Du|q ≤ |Du|p
(|u|+ 1)m+1

+ (|u|+ 1)
m+1
p−q ·q.

If q < ps
s+1 we can choose m > 0 such that m+1

p−q q ≤ s ; we then obtain

(6.8) |Du|q ≤ |Du|p
(|u|+ 1)m+1

+ (|u|+ 1)s .
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From (6.6), (6.7) and (6.8) we deduce |Du|q ∈ L1(Ω) for any 1 ≤ q < q1. This proves
Theorem 5. #

As in Section 4 we can use certain growth assumptions on the nonlinear term g(x, u) in
order to obtain existence results in the case 1 < p < p0. Indeed we obtain the following
theorem.

Theorem 6. Let A and g be as above and let 1 < p ≤ p0 and s(p− 1) > 1. Then for any
f ∈ L1(Ω) there exists u, solution of (6.1)-(6.2) in the following sense : u ∈ W 1,q

0 (Ω) for
any 1 ≤ q < q1 , g(x, u) ∈ L1(Ω) and

(6.9) −div (A(x,Du)) + g(x, u) = f in D′(Ω).

Notice that, since s > p − 1 we have q1 > p − 1 and then A(x,Du) is well defined in
L1(Ω)).

Proof. Let fn = inf(|f |, n)sign (f). Since fn ∈ W−1,p′(Ω) it is known (see, for instance,
[W], [BB]), that there exists un such that un ∈ W 1,p

0 (Ω), g(x, un) ∈ L1(Ω) and

(6.10)
∫

Ω

A(x, Dun)Dvdx +
∫

Ω

g(x, un)vdx =
∫

Ω

fvdx,

for all v ∈ W 1,p
0 (Ω)∩L∞(Ω). Taking in (6.10) v = φε(un) with φε(σ) = inf(|σ|/ε, 1) sign (σ),

we obtain when ε → 0,

(6.11)
∫

Ω

|g(x, un)|dx ≤
∫

Ω

|f |dx = C1 .

Then by (G2’) we also have

(6.12)
∫

Ω

|un|sdx ≤ C1 .

Let k ∈ N. Taking in (6.10) v = φ(un) with
{

φ(σ) = inf((σ − k)+, 1) if σ ≥ 0
φ(σ) = −φ(σ) if σ < 0

we obtain

(6.13)
∫

Bk

|Dun|pdx ≤ 1
C

∫

Ω

|f |dx = C2

with Bk = {x ∈ Ω, k ≤ un(x) ≤ k + 1}. From (6.13), we deduce for any m > 0 (as in
Theorem 5)

(6.14)

∫

Ω

|Dun|p
(|un|+ 1)m+1

dx =
∞∑

k=0

∫

Bk

|Dun|p
(|un|+ 1)m+1

dx ≤

≤ C2

β∑

k=0

1
(k + 1)m+1

= C3
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(with C3 depending on m, not on n). Let 1 ≤ q < q1. As in Lemma 2.3 we take m ∈ (0,m1)
where m1 = s(p− q)/q − 1 ( m1 > 0 thanks to q > q1).

|Dun|q ≤ |Dun|p
(|uN |+ 1)m+1

+ (|un|+ 1)
m+1
p−q q ≤ |Dun|p

(|un|+ 1)m+1
+ (|un|+ 1)s

with (6.12) and (6.14) this gives

(6.15)
∫

Ω

|Dun|qdx ≤ C4

Therefore (since u = 0 on ∂Ω)

(6.16) ‖un‖W 1,q
0 (Ω) ≤ C5

(C5 depends on q, 1 ≤ q < q1, not on n). Then we can assume (up to extraction of a
subsequence)

(6.17) un → u

a.e. in W 1,q
0 (Ω) for any 1 ≤ q < q1. Also,

(6.18) g(x, un) → g(x, u) a.e.

Using techniques similar to those of the proof of Theorem 1 (see also [BG]) we prove

(6.19) g(x, un) → g(x, u) in L1
loc(Ω),

and with (6.11), (6.18) and Fatou’s Lemma,

(6.20) g(x, u) ∈ L1(Ω) .

Using (A4’) we also prove the a.e. convergence of Dun to Du. Indeed one has for ε > 0,
for any n,m ∈ N,

∫

{|un−um|≤ε}
(A(x,Dun)−A(x, Dum))(Dun −Dum)dx ≤ ε

∫

Ω

(|hn|+ |hm|)dx ≤ εC6

with hn = fn − g(x, un). With (A4’) this gives

∫

{|un−um|≤ε}

|Dun −Dum|s
β(x, Dun, Dum)

dx ≤ εC6.
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Thus we have,
∫

Ω

|Dun −Dum|dx ≤ ε1/sC7(
∫

Ω

β(x,Dun, Dum)
1

s−1 dx)1−
1
s

+
∫

{|un−um|>ε}
|Dun −Dum|dx.

Using γ
s−1 ≤ 1, the Lq-bound on |Dun| for some 1 < q < q1 and the fact that meas {|un −

um| ≥ ε} → 0 as n,m →∞ (this is due to the L1(Ω) convergence of un to u), we conclude
that

(6.21)
∫

Ω

|Dun −Dum|dx → 0 as n,m →∞.

This proves (up to extraction of a subsequence) that

Dun → Du a.e.

Thus Dun → Du in Lq(Ω) for any 1 ≤ q < q1, and therefore (since p− 1 < 1),

(6.22) A(x,Dun) → A(x,Du) in L1(Ω) .

(6.22), (6.19) and fn → f in L1(Ω) imply that u satisfies (6.9). This completes the proof.
#
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